
Applications of Graph Probing to Web Document Analysis

Daniel Lopresti and Gordon Wilfong
Bell Labs, Lucent Technologies Inc.

600 Mountain Avenue
Murray Hill, NJ 07974 USA

fdpl,gtwg@research.bell-labs.com

1 Introduction

Graphs are a fundamental representation in much of
computer science, including the analysis of both traditional
and Web documents. Algorithms for higher-level docu-
ment understanding tasks often use graphs to encode log-
ical structure. HTML pages are usually regarded as tree-
structured, while the WWW itself is an enormous, dynamic
multigraph. Much work on attempting to extract informa-
tion from Web pages makes explicit or implicit use of graph
representations [1, 3, 4, 7, 11].

It follows, then, that the ability to compare two graphs is
basic functionality, as demonstrated in such applications as
query-by-structure, wrapper generation for information ex-
traction, performance evaluation, etc. Because most prob-
lems relating to graph comparison have no known efficient,
guaranteed-optimal solution, researchers have developed a
wide range of heuristics. For the problem of determining
isomorphism, for example, many heuristics rely on the ex-
istence of certain vertex invariants, which consist of a value
f(v) assigned to each vertex v, so that under any isomor-
phism I, if I(v) = v0 then f(v) = f(v0). One commonly
used invariant is the degree of a vertex. In fact nauty, a
successful software package for determining graph isomor-
phism (see [9]), relies on such vertex invariants.

This observation can be seen as forming the basis for
graph probing, a paradigm we have recently begun explor-
ing for graph comparison [5, 8]. However, we desire more
than a simple “yes/no” answer; we are interested in quanti-
fying the similarity between two graphs, not just in whether
they may be isomorphic. Conceptually, the idea of prob-
ing is to place each of the two graphs under study inside a
“black box” capable of evaluating a set of graph-oriented
operations (e.g., returning a list of all the leaf vertices, or all
vertices labeled in a certain way). We then pose a series of
probes and correlate the responses of the two systems.

Our past work in the area treats graph probing as an on-
line process; both the query graph and the database graph
are available for synthesizing the probe set. While this

is an appropriate assumption when one is comparing, say,
the output of a recognition algorithm with its associated
ground-truth, it is not a workable model for retrieval ap-
plications when the database contains anything other than a
small number of documents.

In this paper, we describe our first steps towards adapt-
ing the graph probing paradigm to allow pre-computation
of a compact, efficient probe set for databases of graph-
structured documents in general, and Web pages coded in
HTML in particular. This new model is shown in Fig-
ure 1, where the portion of the computation bounded by
dashed lines is performed off-line. We consider both com-
paring two graphs in their entirety, as well as determining
whether one graph contains a subgraph that closely matches
the other. We present an overview of work in progress, as
well as some preliminary experimental results.

Database Graphs

A
A
AAAAA
A

Query Graph

Probe
Synthesis

% Agreement

A
A
AAAAA
A
A
A
AAAAAA
A

Probe
Evaluation

AAAAAA
AAAAAAProbe Set

A
A
AAAAA
A
AA

A
AAAAA
A
AA

A
AAAAAA
A
A

AAAAAAAAAAAAAAAAAAAAAA

Probe
Evaluation

AAAAA
AAAAA

Responses

AA
AA

Responses

AAA
AAA

AA
AA

AAAAAAA
AA
AA
AAA
AAA

AA
AA

Figure 1. Overview of graph probing.

2 Related Work

Graph comparison is an important yet difficult problem,
so it should come as no surprise that a large number of re-
searchers have proposed heuristics or solutions designed for
special cases. For example, Bunke and Messmer present

a decision-tree-based precomputation scheme for solving
the subgraph isomorphism problem [2], although their data
structure can be exponential in the size of the database
graphs in the worst case.

Lazarescu et al. propose a machine learning approach to
building decision trees for eliminating from further consid-
eration graphs that cannot possibly be isomorphic to a given
query [6]. While they employ a similar set of features to the
ones we use, they do not consider the approximate matching
or subgraph problems.

Papadopoulos and Manolopoulos discuss an idea that is
philosophically quite similar to ours [10]. However, they
focus on a single invariant: node degree. It is clear this is
not sufficient for catching all of the interesting differences
that can arise between HTML documents. Moreover, their
histogram technique is applied only to the problem of com-
paring complete graphs, whereas we wish to examine the
subgraph matching problem as well.

Valiente and Martínez describe an approach for subgraph
pattern-matching based on finding homomorphic images of
every connected component in the query [12]. Again, the
worst-case time complexity is exponential, but such features
could also perhaps be incorporated in the heuristics we are
about to present.

Instead of trying to solve the problem for graphs in gen-
eral, some leeway can be had by limiting the discussion to
trees, for which efficient comparison algorithms are known.
Schlieder and Naumann consider a problem closely related
to ours: error-tolerant embedding of trees to judge the sim-
ilarity of XML documents [11]. Likewise, Dubois et al.
write about tree embedding for searching databases of semi-
structured multimedia documents [4].

Finally, a number of researchers have studied techniques
for identifying smaller, coherent substructures within Web
pages (e.g., lists, tables) [1, 3, 7].

3 Graph Probing

The graph model we assume for HTML documents
includes the standard tree-structured hierarchy generated
when parsing the tags (the “contains”/“contained-by” rela-
tionship). In addition, we also make use of the order in
which content and the various substructures are encoun-
tered (in many cases this corresponds to the natural read-
ing order for the material in question). We represent this
via “next”/“previous” cross-edges that connect nodes at a
given level in the hierarchy, rather than assuming an im-
plicit fixed ordering on the children of a node as some other
researchers have done. Lastly, we record hyperlinks as ei-
ther back-edges (in the case of targets on the same page)
or a distinguished node type (in the case of external refer-
ences). No provision is currently made for incoming links
from outside documents.

Several criteria are desirable when designing a probing
strategy: probes should be invariant across graph or sub-
graph isomorphism, they should be easy to evaluate and
the responses easy to compare, similar graphs should agree
more often than dissimilar graphs, and the probes in a set
should be independent.

While the probing paradigm is open-ended, our initial
efforts for Web documents have focused on the following
categories:

Class 0 These probes count the number of occurrences of
a given type of vertex in the graph. A representative
Class 0 probe might be paraphrased as: How many ver-
tices labeled “Table” does the graph have?

Class 1 These probes examine the vertex and edge struc-
ture of the graph by counting in- and out-degrees, tab-
ulating different types of incoming and outgoing edges
separately. An example is: How many vertices have
one incoming edge labeled “contains”, another la-
beled “next”, and none labeled “href”, along with
two outgoing edges labeled “contains”, one labeled
“next”, and one labeled “href”?

In addition to these classes, which we hope to expand
for this present work, our research on table understand-
ing makes use of two other, more sophisticated types of
probes [5].

We define a discriminating probe to be a probe that
demonstrates a difference between two graphs. Two funda-
mental questions are of interest: (1) For two graphs that are
different, does there exist at least one discriminating probe?
and (2) Over the entire set of probes, how many are discrim-
inating? The first of these reflects the graph isomorphism
problem. The second can serve as a measure of how similar
the two graphs are. To make this more explicit, we define
the agreement between two probe sets to be:

agreement � 1:0 �
of discriminating probes

total # of probes
(1)

Our aim is to equate “agreement” with the traditional con-
cept of “accuracy.”

When comparing two graphs in their entirety, it suf-
fices to correlate their responses to the probes and count the
number of times they agree. For the problem of subgraph
matching, however, we cannot expect to be able to com-
pare directly the outputs for the larger graph to those for the
smaller. For example, consider a query graph consisting of
a single table that corresponds to a table in some database
document, but where that document also contains dozens of
other, unrelated tables.

To assure that the Class 0 probes are invariant across
subgraph isomorphism, the manner in which the results are
compared must account for this. Clearly, if the query graph

contains a certain number of nodes labeled in a given way,
the target graph may possibly contain an isomorphic sub-
graph so long as it contains at least that many nodes labeled
in the same way. If the target graph has fewer such nodes,
we know there cannot be a subgraph isomorphism. Sim-
ilarly, the way in which the Class 1 probes are correlated
needs to be modified as well, since the nodes present in the
query graph may have fewer incoming and outgoing edges
than their corresponding nodes in an isomorphic subgraph
of a larger graph.

4 Preliminary Experimental Results

This paper describes research that is very much still in
progress. As we have noted, we have implemented the
on-line version of graph probing to help in the evaluation
of table understanding algorithms. However, the utility of
graph probing in that specialized domain is not an assurance
that it is an appropriate paradigm for searching databases
for matches in a retrieval application, especially since the
classes of probes we have at our disposal are also different
here.

To begin examining some of these issues, we performed
two simple experiments to test graph probing in an infor-
mation retrieval setting. In both cases we used Class 0 and
Class 1 probe sets. The first test examined the ability of
the two classes to detect changes as the structure of a spe-
cific commercial Web page evolved naturally over several
days. The second studied the subgraph matching problem
by searching for a Web page that had been edited by delet-
ing a significant portion of its content.

The small database consisted of 75 current WWW home-
pages collected from a variety of sources: commercial, edu-
cational institutions, personal, news organizations, and por-
tal pages. We implemented a parse tree generator capable of
recovering from the kinds of simple errors that often arise
in real-world HTML (e.g., missing end tags). The size of
the resulting graphs ranged from a minimum of 60 nodes to
a maximum of 1,204, with an average of 423 nodes. The
probe set, generated automatically, consisted of a total of
219 Class 0 and Class 1 probes.

For the first experiment, we used as our query the
May 31, 2001 homepage from The New York Times
(http://www.nytimes.com/). This is a relatively complex
page, its parse tree containing 1,089 nodes. The results for
using graph probing to compare this page to the 75 pages
in the database are shown in Figure 2. The May 31 page
is, of course a perfect match for itself, but also a very good
match for the June 4, 5, and 6 homepages as well (the only
other examples from The New York Times in the database).
Clearly some sort of structural change in the page was made
between May 31 and June 4. Conversely, a number of other
regularly-updated Web pages we have examined show no

structural changes from day-to-day, although obviously the
content is constantly varying.

AAAAAAAAAAAAAAAAAAAAAAAAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAAAAAAAAAAAAAAAAAAAAAAAAA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A

NY Times 5/31/01 (query)

NY Times 6/4/01 NY Times 6/5/01 NY Times 6/6/01

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Database Web Page

G
ra

p
h

 P
ro

b
in

g
 A

g
re

em
en

t

Figure 2. Graph probing results for Experi-
ment 1 (full graph comparison measure).

For our second experiment, we used the homepage for
the WDA'2001 workshop, a screen snapshot of which is
given in Figure 3. The corresponding parse tree contained
328 nodes. To create the query, the page was edited by
deleting the sidebar on the left side of the page. The parse
tree for the edited page had 125 nodes.

Figure 3. Snapshot of the WDA’2001 home-
page (http://www.csc.liv.ac.uk/˜wda2001/).

The results for this experiment, using graph probing with
the subgraph comparison measure, are shown in Figure 4.
Here we can see that the two probe classes are able to dis-
tinguish the original page and the smaller, edited version
from the rest of the database, but just barely. The current
probes, which consider only structure (and high-level struc-
ture at that), need to be supplemented with new classes that
are able to make use of content and other aspects of the page
layout before the probing paradigm can be effective for the

subgraph matching problem. This is work in progress.

AAAAAAAAAAAAAAAAAAAAAAAAAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAAAAAAAAAAAAAAAAAAAAAAAAAA
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Edited page (query)Original page

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Database Web Page

G
ra

p
h

 P
ro

b
in

g
 A

g
re

em
en

t

Figure 4. Graph probing results for Experi-
ment 2 (subgraph comparison measure).

5 Discussion

In this paper we have described our initial efforts to
adapt the graph probing paradigm to searching databases of
graph-structured documents. We considered both the com-
parison of two graphs in their entirety, as well as the sub-
graph matching problem, and gave some preliminary ex-
perimental results.

Currently, our graph probing provides a measure of how
similar two graphs are or how similar one graph is to some
subgraph of another. It does not, however, provide a map-
ping from one graph to the other. Clearly, to extract infor-
mation from semi-structured sources we need to recognize
more than the fact that some matching is likely to exist,
we must be able to identify the actual correspondence be-
tween the graphs (or between one graph and a subgraph of
the other). As mentioned, at the very least graph probing
can be used to identify graphs that are a likely match and
then run more computationally expensive methods on this
smaller collection of graphs to find the desired matches.

In addition to information retrieval, other possible ap-
plications of graph comparison via probing could include
wrapper generation and maintenance (e.g., [1, 3]) and anal-
ysis of HTML-coded tables (e.g., [7]). This would require
retargeting our graph probing language to information ex-
traction applications, a task that would be challenging but
seems feasible.

References

[1] N. Ashish and C. Knoblock. Wrapper generation for
semi-structured Internet sources. In Proceeding of
the Workshop on the Management of Semistructured
Data, Tucson, AZ, June 1997.

[2] H. Bunke and B. T. Messmer. Recent advances in
graph matching. International Journal of Pattern
Recognition and Artificial Intelligence, 11(1):169–
203, November 1997.

[3] W. W. Cohen. Recognizing structure in Web pages us-
ing similarity queries. In Proceedings of the Sixteenth
National Conference on Artificial Intelligence, pages
59–66, Orlando, FL, 1999.

[4] D. Dubois, H. Prade, and F. Sedes. Some uses of
fuzzy logic in multimedia databases querying. In Pro-
ceedings of the Workshop on Logical and Uncertainty
Models for Information Systems, London, England,
July 1999.

[5] J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Table
structure recognition and its evaluation. In Proceed-
ings of Document Recognition and Retrieval VIII, vol-
ume 4307, pages 44–55, San Jose, CA, January 2001.

[6] M. Lazarescu, H. Bunke, and S. Venkatesh. Graph
matching: Fast candidate elimination using machine
learning techniques. In Advances in Pattern Recog-
nition, volume 1876 of Lecture Notes in Computer
Science, pages 236–245. Springer-Verlag, Berlin, Ger-
many, 2000.

[7] S.-J. Lim and Y.-K. Ng. An automated approach for
retrieving hierarchical data from HTML tables. In
Proceedings of the ACM International Conference on
Information and Knowledge Management, pages 466–
474, Kansas City, MO, November 1999.

[8] D. Lopresti and G. Wilfong. Evaluating document
analysis results via graph probing. In Proceedings
of the Symposium on Document Image Understand-
ing Technology, pages 201–210, Columbia, MD, April
2001.

[9] B. McKay. Practical graph isomorphism. Congressus
Numerantium, 30:45–87, 1981.

[10] A. N. Papadopoulos and Y. Manolopoulos. Structure-
based similarity search with graph histograms. In
Proceedings of the 10th International Workshop on
Database & Expert Systems Applications, pages 174–
178. IEEE Computer Society Press, 1998.

[11] T. Schlieder and F. Naumann. Approximate tree em-
bedding for querying XML data. In Proceedings of
the ACM SIGIR Workshop on XML and Information
Retrieval, Athens, Greece, July 2000.

[12] G. Valiente and C. Martínez. An algorithm for graph
pattern-matching. In Proceedings of the Fourth South
American Workshop on String Processing, pages 180–
197. Carleton University Press, 1997.

	p: 51
	p2: 52
	p3: 53
	p4: 54

